Effect of warp yarn paths on the symmetrical cyclic bending fatigue properties of 3D woven composites

Author:

Zhao Shibo12ORCID,Chen Li12,Gao Ziyue12

Affiliation:

1. Ministry of Education Key Laboratory of Advanced Textile Composite Materials Institute of Composite Materials, Tiangong University Tianjin China

2. School of Textile Science and Engineering Tiangong University Tianjin China

Abstract

AbstractIn this study, the symmetric cyclic bending fatigue properties of three‐dimensional (3D) woven composites under the condition of R = −1 were investigated. Three types of 3D preform structures with different warp yarn paths were designed, and a bending fatigue testing fixture suitable for 3D woven composites under R = −1 conditions was developed. In addition, the bending fatigue properties, damage mechanisms, and failure modes of three composites were studied. The results showed that the warp yarn paths were responsible for the differences in quasi‐static bending properties. The bending fatigue properties were related to the warp yarn paths and applied stress. Satin woven (SW) structure had the highest bending fatigue failure strain value, followed by the twill woven (TW) structure, and the plain woven (PW) structure had the lowest. The bending fatigue limits of PW, TW, and SW structures were 40% (136 N), 40% (210.5 N), and 16% (119.4 N) stress levels, respectively. The bending fatigue failure mode of 3D woven composites was softening failure under the condition R = −1.Highlights The warp yarn paths significantly affects the quasi‐static bending properties. A symmetrical cyclic bending fatigue testing fixture was developed. The symmetrical cyclic bending fatigue life of 3D woven composites was obtained. SW composites have the highest bending fatigue failure strain value. The symmetrical cyclic bending fatigue failure modes were softening failures.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3