Evaluation of two plumes jet plasma reactor for plasmolysis of H2O vapor and CO2 combinations – Optimization study

Author:

Abdul‐Majeed Wameath S.1ORCID,Nasir Qazi1ORCID,Alajmi Muzna H.1,Almaqbali Khaloud A.1

Affiliation:

1. Department of Chemical and Petrochemical Engineering College of Engineering and Architecture ‐ University of Nizwa PC 616 POB 33 Nizwa Oman

Abstract

AbstractA custom design multi‐flying jet plasma torches (MFJPT) reactor was tested for plasmolysis of water vapor and mixtures of water vapor‐carbon dioxide in a series of experimental investigations at various reactor operational parameters. Experimentation plans were applied within the range of induced power (100–300 watts) and various vapor/gas throughputs. The produced gases were analyzed through online gas chromatography. The results of water vapor plasmolysis in two schemes demonstrated the production of 1337 ppm of hydrogen from water vapor/argon and 1665 ppm from applying a water vapor/argon/CO2 combination. Valuable hydrocarbon gases (e.g., Ethane, Ethylene/Acetylene) were generated and detected at higher conversions upon introducing H2O vapor, argon, and CO2 mixtures. The experimental data were trained through machine learning and a Gaussian Process Regression (GPR) model has fitted the data quite well. Ultimately, optimization study outcomes are presented through a color heat‐map for system scaling‐up purposes.

Funder

University of Nizwa

Publisher

Wiley

Subject

General Medicine

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3