Potential of utilizing pathogen‐derived mycotoxins as alternatives to synthetic herbicides in controlling the noxious invasive plant Xanthium italicum

Author:

Wei Caixia123ORCID,Luo Shihong4,Liu Lin5,Shi Kai12,Han Caixia1,Mohamad Osama Abdalla Abdelshafy1,Shao Hua126ORCID

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi China

2. University of Chinese Academy of Sciences Beijing China

3. Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands

4. College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang China

5. College of Pharmacy Linyi University Linyi China

6. Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi China

Abstract

AbstractDiscovery of environmentally friendly agents for controlling alien invasive species (AIS) is challenging and in urgent need as their expansion continues to increase. Xanthium italicum is a notorious invasive weed that has caused serious ecological and economic impacts worldwide. For the purpose of exploring the possibility of utilizing herbicidal mycotoxins to control this species, three compounds, a new compound, curvularioxide (1), a new naturally occurring compound, dehydroradicinin (2), and a known compound, radicinin (3), were isolated via activity‐guided fractionation from the secondary metabolites of the pathogenic Curvularia inaequalis, which was found to infect X. italicum in natural habitats. All isolated compounds exhibited potent herbicidal activity on receiver species. It is noteworthy to mention that their effects on X. italicum in our bioassays were equivalent to the commercial herbicide glyphosate. Subsequent morphological analysis revealed that application of radicinin (3) severely hindered X. italicum seedlings' hypocotyl and root development. Malondialdehyde content and the activity of catalase and peroxidase of the seedlings were also significantly different from the control, implying the occurrence of induced oxidative stress. Our results suggest that pathogens infecting invasive plants might be valuable resources for developing safer herbicides for controlling weeds. © 2023 Society of Chemical Industry.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3