On‐chip terahertz whispering gallery mode resonator with high‐Q based on multislot waveguide

Author:

Zhou Yanru12,Xu Kai23,Xin Chenguang23,Liu Wenyao23,Xing Enbo23,Tang Jun23,Liu Jun23

Affiliation:

1. School of Information and Communication Engineering North University of China Shanxi Province China

2. Key Laboratory of Quantum Sensing and Precision Measurement North University of China Shanxi Province China

3. School of Instrument and Electrons North University of China Shanxi Province China

Abstract

AbstractA whispering gallery mode resonator (WGMR) with a high‐quality factor and large coupling spectrum width can enhance the interaction of matter and lightwave by several orders of magnitude in a large bandwidth range. The performance of the resonator determines the accuracy and range of terahertz (THz) sensing. However, the quality factors of the reported THz WGMRs are highly limited by the high absorption loss of materials within THz spectral range. The coupling spectrum width is usually limited by the coupling structure. In this paper, an on‐chip THz whispering gallery mode resonator based on multislot waveguide and gradual coupling structure is proposed. By increasing the evanescent field of guided wave mode, the absorption loss in the resonator is significantly reduced. Through gradual coupling structure, resonance curves are more uniform within a wide spectrum. The simulation results show that the structure can improve the instinct quality factor of the THz resonator to the order of when the bending radius is as small as 2mm. At the same time, sensitivity is increased by more than six times and uniform resonance curves are achieved from THz.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3