Investigation of microstructural, micromorphology, and surface plasmon resonance characteristics in Ni/Al, Ni/Cu, and Ni/SS thin films

Author:

Mohammadi Saeedeh1ORCID,Rezaee Sahar1ORCID,Nia Borhan Arghavani1ORCID,Boochani Arash1ORCID,Ţălu Ştefan2ORCID

Affiliation:

1. Department of Physics, Kermanshah Branch Islamic Azad University Kermanshah Iran

2. The Directorate of Research, Development and Innovation Management (DMCDI) Technical University of Cluj‐Napoca Cluj‐Napoca Romania

Abstract

AbstractAs the first boundary between the environment and the material, the surface plays an important role in their interaction with each other, therefore, the use of appropriate tools and analysis to examine the mechanical properties and morphology of surfaces has particular importance in industry and research. In this research, a thin film of nickel was deposited on metal substrates made of aluminum, copper, and steel by using the RF magnetic cathode. Then, using a non‐contact atomic force microscope, the morphological properties of the nickel film with static parameters, Minkowski functionals (MF's), fractal, and multifractal were extracted to be analyzed and studied. After that, using parameters such as root mean square (RMS) roughness, skewness, and kurtosis, it was determined how the surface roughness, distribution, and probability density of particles on the film surface alters with the change of the substrate. Next, by examining and analyzing the Δα and Δf parameters obtained from the multifractal section, the morphology of the produced film on the metal substrates was investigated. Then, the change in the surface plasmon resonance (SPR) peak position is changed for the prepared film in the range of the absorption spectrum due to the substrate effect and the microstructural properties of the formed film.Highlights Ni film has been deposited by Rf magnetron sputtering. The effect of metal substrates on the topography, fractality, and optical properties was studied. Minkowski functionals were used to investigate the surface morphology of the samples. Substrate's material and the topography of the formed film can changed the surface plasmon resonance position.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3