Exploring new depths: Applying machine learning for the analysis of student argumentation in chemistry

Author:

Martin Paul P.1ORCID,Kranz David1ORCID,Wulff Peter2ORCID,Graulich Nicole1ORCID

Affiliation:

1. Institute of Chemistry Education Justus‐Liebig‐University Giessen Germany

2. Physics Education Research University of Education Heidelberg Germany

Abstract

AbstractConstructing arguments is essential in science subjects like chemistry. For example, students in organic chemistry should learn to argue about the plausibility of competing chemical reactions by including various sources of evidence and justifying the derived information with reasoning. While doing so, students face significant challenges in coherently structuring their arguments and integrating chemical concepts. For this reason, a reliable assessment of students' argumentation is critical. However, as arguments are usually presented in open‐ended tasks, scoring assessments manually is resource‐consuming and conceptually difficult. To augment human diagnostic capabilities, artificial intelligence techniques such as machine learning or natural language processing offer novel possibilities for an in‐depth analysis of students' argumentation. In this study, we extensively evaluated students' written arguments about the plausibility of competing chemical reactions based on a methodological approach called computational grounded theory. By using an unsupervised clustering technique, we sought to evaluate students' argumentation patterns in detail, providing new insights into the modes of reasoning and levels of granularity applied in students' written accounts. Based on this analysis, we developed a holistic 20‐category rubric by combining the data‐driven clusters with a theory‐driven framework to automate the analysis of the identified argumentation patterns. Pre‐trained large language models in conjunction with deep neural networks provided almost perfect machine‐human score agreement and well‐interpretable results, which underpins the potential of the applied state‐of‐the‐art deep learning techniques in analyzing students' argument complexity. The findings demonstrate an approach to combining human and computer‐based analysis in uncovering written argumentation.

Publisher

Wiley

Subject

Education

Reference169 articles.

1. Evaluating content‐related validity evidence using a text‐based machine learning procedure;Anderson D.;Educational Measurement: Issues and Practice,2020

2. The cultural environment: Measuring culture with big data;Bail C. A.;Theory and Society,2014

3. Making sense of argumentation and explanation;Berland L. K.;Science Education,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3