Effects of range and niche position on the population dynamics of a tropical plant

Author:

Moutouama Jacob K.12ORCID,Gaoue Orou G.134ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA

2. Program in Ecology and Evolutionary Biology, Department of Biosciences Rice University Houston Texas USA

3. Faculty of Agronomy University of Parakou Parakou Benin

4. Department of Geography, Environmental Management and Energy Studies University of Johannesburg, APK Campus Johannesburg South Africa

Abstract

AbstractThe center‐periphery hypothesis predicts a decline in population performance toward the periphery of a species' range, reflecting an alteration of environmental conditions at range periphery. However, the rare demographic tests of this hypothesis failed to disentangle the role of geography from that of ecological niche and are biased toward temperate regions. We hypothesized that, because species are expected to experience optimal abiotic conditions at their climatic niche center, (1) central populations will have better demographic growth, survival, and fertility than peripheral populations. As a result, (2) central populations are expected to have higher growth rates than peripheral populations. Peripheral populations are expected to decline, thus limiting species range expansion beyond these boundaries. Because peripheral populations are expected to be in harsh environmental conditions, (3) population growth rate will be more sensitive to perturbation of survival‐growth rather than fertility in peripheral populations. Finally, we hypothesized that (4) soils properties will drive the variations in population growth rates for narrowly distributed species for which small scale ecological factors could outweigh landscape level drivers. To test these hypotheses, we studied the demography of Thunbergia atacorensis (Acanthaceae), a range‐limited herb in West Africa. We collected three years of demographic data to parameterize an integral projection model (IPM) and estimated population level demographic statistics. Demographic vital rates and population growth rates did not change significantly with distance from geographic or climatic center, contrary to predictions. However, populations at the center of the geographic range were demographically more resilient to perturbation than those at the periphery. Soil nitrogen was the main driver of population growth rate variation. The relative influence of survival‐growth on population growth rates exceeded that of fertility at the geographic range center while we observed the opposite pattern for climatic niche. Our study highlights the importance of local scale processes in shaping the dynamics and distribution of range‐limited species. Our findings also suggest that the distinction between geographic distribution and climatic niche is important for a robust demographic test of the center‐periphery hypothesis.

Funder

British Ecological Society

National Institute for Mathematical and Biological Synthesis

National Science Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3