Performance evaluation of a non linear PID controller using chaotic gravitational search algorithm for a twin rotor system

Author:

Sivadasan J.1,Shiney J. Roscia Jeya1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering P.S.R Engineering College Sivakasi India

Abstract

AbstractA novel strategy using a chaotic gravitational search algorithm (CGSA) based nonlinear PID control scheme, which is validated through a laboratory helicopter model called the twin rotor system, is presented in this paper. In this work, CGSA is used as a stochastic based global optimization algorithm for controller design in the twin rotor system adopted. The fine chaotic search process used in CGSA obtains the optimal solution in the iterative process based on the current best solution. The goal of the controller design in this paper is to stabilize the twin rotor system with considerable cross couplings to reach the selected position and follow the desired trajectory effectively. The addition of nonlinear functions to the PID controller structure initiates better error tracking and facilitates smooth output under changing input conditions. The design objective is to implement a nonlinear PID control scheme for the angular displacements of the twin rotor system with minimization of the integral square error (ISE) as the fitness function in the algorithm. The statistical performance of the controller is analyzed by considering the best, worst, mean, and standard deviations of ISE. In this work, simultaneous control of pitch and yaw angles is considered to get rid of the coupling effect between the two rotors. From the simulation results it is observed that the proposed work shows better performance than the other evolutionary computation techniques. The results also indicate the advantage of the proposed CGSA based tuning for the two degree of freedom MIMO control with standard reference trajectories as per the TRMS330‐10 model.

Publisher

Wiley

Subject

Modeling and Simulation,Control and Systems Engineering,Energy (miscellaneous),Signal Processing,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence

Reference31 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3