Development and in vitro antiviral activity of ivermectin liposomes as a potential drug carrier system

Author:

Kocas Meryem123ORCID,Comoglu Tansel3ORCID,Ozkul Aykut4ORCID

Affiliation:

1. Department of Pharmaceutical Technology Selcuk University Faculty of Pharmacy Konya Turkey

2. Graduate School of Health Sciences Ankara University Ankara Turkey

3. Department of Pharmaceutical Technology Ankara University Faculty of Pharmacy Ankara Turkey

4. Department of Virology Ankara University Faculty of Veterinary Medicine Ankara Turkey

Abstract

AbstractThis study aimed to assess and compare diverse formulations of ivermectin‐loaded liposomes, employing lipid film hydration and ethanol injection methods. Three lipids (DOPC, SPC, and DSPC) were used in predetermined molar ratios. A total of 18 formulations were created, and a factorial design determined the optimal formulation based on particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency. The average mean particle size, PDI and zeta potential of the selected formulations (F1, F2, F7, F9, and F11) was, respectively, 196.40 ± 44.60 nm, 0.39 ± 0.09, and −40.24 ± 9.17. The encapsulation efficiency exceeded 80%, with a mean loading capacity of 4.00 ± 1.70%. In vitro studies included transmission electron microscopy, Fourier transform infrared spectroscopy, drug release, and antiviral activity assessments against SARS‐CoV‐2. The liposomal formulations demonstrated superior antiviral activity compared to free ivermectin, as indicated by lower IC50 values. The results of this study emphasize the effectiveness of ivermectin‐loaded liposomes in inhibiting viral activity, highlighting their potential as promising candidates for antiviral therapy. The findings suggest that the strategic use of liposomes as drug carriers can significantly modulate and improve the antiviral properties of ivermectin, offering a novel approach to harnessing its full therapeutic potential. Collectively, these results provide a robust foundation for further exploration of ivermectin as a viral protection tool and optimization of its delivery mechanisms.

Funder

Ankara Universitesi

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3