Diastereoselective Synthesis of Pyridone ribo‐C‐Nucleosides via Heck Reaction and Oxidation

Author:

Gniech Tim1,Richert Clemens1ORCID

Affiliation:

1. Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany

Abstract

AbstractNucleosides find applications in medicinal chemistry, chemical biology and diagnostics. Among the nucleosides, C‐nucleosides have attracted particular attention because their carbon‐carbon bond between nucleobase and ribose provides stability against degradation. While several well‐established methods exist for the synthesis of 2′‐deoxy‐C‐nucleosides, the preparation of their ribofuranosyl counterparts is more challenging. Established methods for their synthesis give mixtures of anomers and require harsh reagents or conditions. Here we report a diastereoselective glycosylation method involving a Heck reaction between a glycal and an aryl iodide, followed by oxidation of the silyl enol ether with methyl(trifluoromethyl)dioxirane (TFDO). The resulting ketone is then diastereoselectively reduced to the ribonucleoside. The new route has been applied to pyridones and is expected to also yield other ribo‐C‐nucleosides in diastereoselective fashion.

Funder

Volkswagen Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3