Dual‐Stoichiometry Copper Sulphide Nanoparticles by Laser Ablation in DMSO: Synthesis and Biomedical Applications for Enhanced Photothermal Therapy and Photoacoustic Imaging

Author:

Taylan Umut1ORCID,Akçimen Samet1,Eş Ismail12,Küçük Beyza Nur1,Tekgül Esra Kendir1,Çelebi Çağatay3,Kumru Yasin3,Köymen Hayrettin13,Inci Fatih1,Ortaç Bülend1

Affiliation:

1. National Nanotechnology Research Center (UNAM) Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Türkiye

2. Department of Engineering Science Institute of Biomedical Engineering (IBME) University of Oxford OX3 7DQ Oxford UK

3. Acoustic and Underwater Technologies Research Center (BASTA) Department of Electrical and Electronics Engineering Bilkent University 06800 Ankara Türkiye

Abstract

AbstractCopper sulphide nanoparticles are synthesized by laser ablation of a copper target in DMSO by a 527 nm nanosecond pulsed laser. These nanoparticles have double stoichiometry (CuS and Cu1.8S) and crystalline structures, sizes under 30 nm, and they present substantial absorbance in the second near‐infrared window and photoluminescence in the visible region. The nanoparticles are used as photothermal and photoacoustic agents at 1080 nm and 1064 nm, respectively. Utilizing as a photothermal agent, these nanoparticles rapidly exhibit local heating, photothermal stability, and a temperature change of 52.2 °C within 300 s at 1 mg mL−1 concentration and 3.23 W cm−2 laser intensity. On the other hand, while employed as a photoacoustic agent, they enhanced the contrast significantly and increased the brightness proportional to their concentrations when compared to ultrasound imaging. Additionally, the biocompatibility properties of these nanoparticles were tested with cancer cells, and they were subjected to laser ablation to assess their photothermal effects. In this article, we demonstrate that copper sulphide nanoparticles synthesized by pulsed laser ablation hold great promise for photothermal and photoacoustic applications, especially in biomedical applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3