Transition Metal‐Cross‐Linked‐Starch Aerogel‐Derived Porous Carbon‐Based Monolithic Chainmail Electrodes for High‐Current‐Density and Durable Alkaline Water Splitting

Author:

Zhao Yaoyao123,Zhang Zhengguo123,Wang Fang123,Min Shixiong123ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Key Laboratory of Electrochemical Energy Conversion Technology and Application North Minzu University Yinchuan 750021 P. R. China

2. Key Laboratory of Chemical Engineering and Technology State Ethnic Affairs Commission North Minzu University Yinchuan 750021 P. R. China

3. Ningxia Key Laboratory of Solar Chemical Conversion Technology North Minzu University Yinchuan 750021 P. R. China

Abstract

AbstractA porous carbon‐based monolithic chainmail electrode, namely Co2P@CSA, is fabricated via direct carbonization of Co2+‐cross‐linked‐starch aerogel (Co2+‐SA) followed by low‐temperature vapor phosphorization. During successive carbonization‐phosphorization, the SA framework is formulated into 3D hierarchically porous carbon membrane matrix comprising hollow open carbon microspheres while the cross‐linked Co species are converted into uniformly distributed carbon‐encapsulated Co2P nanoparticles on carbon microspheres. Thanks to the high porosity, excellent electrolyte wettability, unique chainmail structure, and good mechanical strength, the monolithic Co2P@CSA can be directly used as a binder‐free bifunctional electrocatalyst for alkaline water splitting, and it can afford a high current density of 100 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at low overpotentials of 140.0 and 305.5 mV, respectively, with outstanding stability at 50 mA cm−2 for >30 h. More significantly, an alkaline electrolyzer assembled using Co2P@CSA achieves a current density of 100 mA cm−2 for overall water splitting (OWS) at a cell voltage of 1.94 V with unit Faradaic efficiency and provides a high solar‐to‐hydrogen (STH) conversion efficiency of 13.4 % when driven by a commercial silicon solar cell. This work offers an effective strategy towards cost‐effective fabrication of high‐performance carbon‐based monolithic chainmail electrocatalysts for energy conversion reactions.

Funder

National Natural Science Foundation of China

West Light Foundation, Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3