Zr‐MOF Nanosheets Featuring Benzothiadiazoles Enable Efficient Visible Light Driven Photooxidation of Sulfides and Amines

Author:

Zhao Yu‐Qing1,Zhou Xing‐Yu1,Zhao Ying‐Mei1,Luo Bi‐Fu1,Li Hai‐Xing1,Tan Yuan‐Zhi2ORCID,Zhuang Jin‐Liang1ORCID

Affiliation:

1. School of Chemistry and Materials Science Key Lab for Functional Materials Chemistry of Guizhou Province Guizhou Normal University Huaxi University Town Gui'an New District Guiyang 550001 China

2. State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian 550001 China

Abstract

AbstractUltrathin zirconium‐based metal−organic framework (MOF) nanosheets, embedded with photochromic units, are expected to be highly efficient heterogeneous photocatalysts, thanks to their rich catalytic sites, short diffusion paths, and effective separation of photogenerated charge carriers. Herein, we reported the synthesis of novel Zr‐MOF nanosheets (Zr‐BTDB) through a solvothermal synthesis that integrates benzothiadiazole (BTz) as a photochromic moiety within the framework of MOF. The Zr‐BTDB nanosheets processes a [Zr123‐O)83‐OH)82‐OH)6] cluster with hcp topology. Importantly, Zr‐BTDB nanosheets exhibit excellent photocatalytic activity for the photooxidation of sulfides and amines at room temperature under blue light irradiation. Notably, these nanosheets maintain their photocatalytic activity and selectivity for up to five cycles without significant loss of activity and crystallinity. Systematical catalytic reactions revealed that the Zr‐BTDB nanosheets enable the generation of singlet oxygen (1O2) and superoxide radical (O2) under visible light irradiation, which is critical reactive oxygen species for the photooxidation of sulfides and benzylamines. Our work represents a straightforward route for the preparation of ultrathin, water stable, and visible‐light‐activated Zr‐MOF nanosheets, offering new potentials for the selective photooxidation of sulfides and amines in an eco‐friendly way.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3