Poly(glycerol‐co‐glyceric acid) Functionalized Nanodiamonds by Nitroxyl Radical‐Catalyzed Oxidation of Primary Alcohols in Poly(glycerol) as Scaffolds for Further Conjugation

Author:

Nishikawa Masahiro12ORCID,Yagasaki Hideo2,He Shougang2,Komatsu Naoki1ORCID

Affiliation:

1. Graduate School of Human and Environmental Studies Kyoto University Sakyo-ku Kyoto 606-8501 Japan

2. Innovation and Business Development Headquarters Daicel Corporation 1239, Shinzaike, Aboshi-ku, Himeji Hyogo 671-1283 Japan

Abstract

AbstractPoly(glycerol) (PG) functionalization is versatile to make various nanoparticles dispersible in aqueous media. In addition, the abundant hydroxy groups in PG give scaffolds for further modification to introduce suitable functional groups. For example, carboxylic group (−COOH) has been introduced through the reaction of hydroxy (−OH) group in PG with succinic anhydride. However, ester linkage in the succinate moiety in the PG layer is subjected to hydrolysis. In this work, we develop an alternative way for a novel −COOH containing PG functionalized detonation nanodiamonds (DND‐PG‐COOH) via oxidation of primary −OH group of PG chain by nitroxyl radical catalysts well‐known as TEMPO or its analogues. The content of −COOH is found to be precisely controlled by the amount of oxidant.

Publisher

Wiley

Subject

Materials Chemistry,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3