Robust high‐gain observer‐based sliding mode controller for pitch and yaw position control of an AUV

Author:

Desai Ravishankar P.1ORCID,Manjarekar Narayan S.1

Affiliation:

1. Department of Electrical and Electronics Engineering BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India

Abstract

AbstractThis article addresses a trajectory tracking control problem concerning an autonomous underwater vehicle's pitch and yaw channel dynamics in the presence of model uncertainties, underwater disturbances, and input saturation. Three different observers are introduced to estimate unknown state variables: a Luenberger‐type cubic observer, a sliding mode observer, and a high‐gain observer (HGO). Initially, a backstepping controller is employed to tackle the tracking problem, extending it to incorporate backstepping sliding mode control (SMC). The mentioned observers are utilized in both aspects of the controller design. Our proposed control law assesses trajectory tracking performance by introducing virtual control inputs, with the sliding surface designed to guide the current state variables toward approximating the virtual state variables. By combining backstepping and SMC, ensure that the state variables of the closed‐loop system converge to the desired state using the HGO. A rigorous analysis is incorporated to validate the robust performance of our proposed control law under conditions of model uncertainties and underwater disturbances. Furthermore, the control law is extended for anti‐windup compensation, mitigating adverse effects on stern and rudder plane saturation levels. Lyapunov stability theory is adopted to establish the stability of the closed‐loop system. Our simulation results convincingly demonstrate the effectiveness of the HGO‐based backstepping SMC law compared to alternative control approaches.

Publisher

Wiley

Subject

Modeling and Simulation,Control and Systems Engineering,Energy (miscellaneous),Signal Processing,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3