Steps toward an integrated soil water tension and osmotic tension sensor

Author:

Goodchild Martin S.1ORCID

Affiliation:

1. Institute for Research in Engineering and Sustainable Environment (IRESE) University of Bedfordshire Luton UK

Abstract

AbstractThe two most important abiotic plant stressors that impact plant development and crop yields are water stress and salinity stress. These issues are particularly important in arid and semi‐arid regions. According to a 2019 research paper, “thirty crop species provide 90% of our food, most of which display severe yield losses under moderate salinity.” Moderate salinity is defined as extracted pore‐water salinity in the range of 4–8 dS m−1. Currently, commercially available soil moisture and bulk soil electrical conductivity sensors can estimate in situ soil pore‐water electrical conductivity with suitably calibrated soil moisture and electrical conductivity models for a wide range of soil types and growing media. With knowledge of the pore‐water electrical conductivity it is possible to estimate osmotic tension. Furthermore, there are commercially available dielectric tensiometers that provide soil water tension measurements from the water content of a porous matrix component that is in equilibrium with the water capillary forces in the surrounding soil or growing media. Combining soil moisture and soil water tension measurements enables water retention curves and the hydraulic properties of a soil to be determined. However, the overall ability of a plant to extract water from a soil or substrate is typically dominated by water tension and osmotic tension. Currently, while the technology blocks exist in different commercial offerings, the combination of a water tension and osmotic tension in an integrated sensor does not exist. A key benefit of the porous matrix in a dielectric tensiometer is that electrical measurements include a component of extracted water from the soil or growing media. With the appropriate dielectric characterization of the porous matrix, there should be no need for soil‐specific calibrations. The aim of the paper is to outline the measurement processing that could be implemented into an integrated water tension and osmotic tension sensor.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3