Enabling High Capacity and Stable Sodium Capture in Simulated Saltwater by Highly Crystalline Prussian Blue Analogues Cathode

Author:

Wang Shiyong1,Lei Yuhao1,Li Changping1,Zhao Lin12,Du Shuwen1,Wang Gang1ORCID,Qiu Jieshan2ORCID

Affiliation:

1. School of Environment and Civil Engineering Research Center for Eco‐environmental Engineering Dongguan University of Technology Dongguan Guangdong 523106 P. R. China

2. College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

Prussian blue analogues (PBAs) are considered as promising cathode materials for capacitive deionization (CDI) technology due to their 3D open‐frame structure and tunable redox active sites. However, the inevitably high content of [Fe(CN)6] vacancies in the crystal structure results in a low salt adsorption capacity (SAC) and poor recycling performance. Herein, a high‐salt nano‐reaction system is established by mechanochemical ball milling, enabling the preparation of a variety of highly crystallized PBAs (metal hexacyanoferrate, MHCF‐B‐170, M = Ni, Co, or Cu) with low vacancies (0.05–0.06 per formula unit). The reduction of vacancies in the PBAs lattice not only strengthens the conductivity and promotes the rapid transfer of electrons, but also reduces the migration energy barrier and accelerates the fast and reversible diffusion of Na+ ions. The structural characterization method and theoretical simulation demonstrates the excellent reversibility and crystal structure stability of MHCF‐B‐170 during the CDI process. Impressively, the NiHCF‐B‐170 exhibits excellent CDI performance, characterized by an exceptionally high SAC of up to 101.4 mg g−1 at 1.2 V, and demonstrates remarkable cycle stability with no significant degradation observed even after 100 cycles. This PBAs with low Fe(CN)6 vacancies are expected to be a competitive candidate material for CDI electrodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3