Carbon Nanotubes Facilitate Silk Hierarchical Assembly by Dry Drawing

Author:

Wan Quan1ORCID,Farr Nicholas T. H.2,Li Peng3,Batey Darren3ORCID,Rau Christoph3,Rodenburg John4,Lu Leihao1,Laity Peter R.2,Xu Zongpu1,Holland Chris2,Rodenburg Cornelia2,Yang Mingying1ORCID

Affiliation:

1. College of Animal Science Zhejiang University Hangzhou 310058 China

2. Department of Material Science and Engineering University of Sheffield Sheffield S1 3JD UK

3. Diamond Light Source Ltd. Harwell Science and Innovation Campus Didcot OX11 0DE UK

4. Department of Electronic and Electrical Engineering University of Sheffield Sheffield S1 3JD UK

Abstract

Biologically derived hierarchical structural materials not only boast energy‐efficient processing but also exhibit impressive mechanical performance. Silk stands as the gold standard in hierarchical fiber production, leveraging a unique combination of advantages. Nevertheless, the artificial replication of silk poses technical challenges related to precision processing and comprehensive molecular control. To address such issues, this study investigates the hierarchical assembly of solid regenerated silk in an air atmosphere, facilitated by the incorporation of carbon nanotube (CNT) seeding. Results obtained highlight that this CNT seeding facilitates multiscale structure development in response to post‐spin tensile stress. Such CNT bridged structure assembly bypasses some natural processing control variables (pH, ions) and the necessary solvent immersed state for conventional silk post‐drawing. Combining secondary electron hyperspectral imaging and 3D synchrotron X‐ray ptychotomography, this study reports silk protein conversion from a disordered as‐spun state to a longitudinal orientated semi‐crystalline nano structure during drawing. The development of microscale structure during the drawing process is attributed to the presence of CNTs, yielding mechanical properties comparable to, and frequently surpassing, those exhibited by native fibers. These findings collectively propose a framework for exploring novel processing routes and offer a practical means controlling self‐assembly in silk materials.

Funder

Royal Society

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3