Three‐Dimensional Manganese Oxide@Carbon Networks as Free‐Standing, High‐Loading Cathodes for High‐Performance Zinc‐Ion Batteries

Author:

Gao Xuan1,Zhang Chengyi2,Dai Yuhang1,Zhao Siyu1,Hu Xueying1,Zhao Fangjia1,Zhang Wei1,Chen Ruwei1,Zong Wei1,Du Zijuan1,Dong Haobo1,Liu Yiyang1,He Hongzhen1,Li Jianwei1,Parkin Ivan P.1,He Guanjie1ORCID,Carmalt Claire J.1

Affiliation:

1. Christopher Ingold Laboratory Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK

2. Institute of Technological Sciences Wuhan University Wuhan Hubei 430072 P. R. China

Abstract

Zinc‐ion batteries (ZIBs), which are inexpensive and environmentally friendly, have a lot of potential for use in grid‐scale energy storage systems, but their use is constrained by the availability of suitable cathode materials. MnO2‐based cathodes are emerging as a promising contenders, due to the great availability and safety, as well as the device's stable output voltage platform (1.5 V). Improving the slow kinetics of MnO2‐based cathodes caused by low electrical conductivity and mass diffusion rate is a challenge for their future use in next‐generation rapid charging devices. Herein, the aforementioned challenges are overcome by proposing a sodium‐intercalated manganese oxide (NMO) with 3D varying thinness carbon nanotubes (VTCNTs) networks as appropriate free‐standing, binder‐free cathodes (NMO/VTCNTs) without any heat treatment. A network construction strategy based on CNTs of different diameters is proposed for the first time to provide high specific capacity while achieving high mass loading. The specific capacity of as‐prepared cathodes is significantly increased. The resulting free‐standing binder‐free cathodes achieve excellent capacity (329 mAh g−1 after 120 cycles at 0.2 A g−1 and 225 mAh g−1 after 200 cycles at 1 A g−1) and long‐term cycling stability (158 mAh g−1 at 2 A g−1 after 1000 cycles).

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3