Simultaneous Inhibition of Heat Shock Response and Autophagy with Bimetallic Mesoporous Nanoparticles to Enhance Mild‐Temperature Photothermal Therapy

Author:

Li Meng1,Hou Mengfei1,Wu Qinghe1,Jiang Yifei1,Jia Guoping1,Wu Xubo1,Zhang Chunfu1ORCID

Affiliation:

1. Department of Nuclear Medicine Ruijin Hospital School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China

Abstract

Mild‐temperature photothermal therapy (MPTT) is a promising tumor therapeutic modality because it can avoid the damage of normal tissues near the tumor caused by excessive heat. However, its therapeutic effect is severely impaired because tumor cells can develop heat resistance and self‐repair by activating heat shock response and cell autophagy. Herein, a tannic acid–iron ion metal organic framework‐coated, chloroquine (CQ)‐loaded mesoporous PdPt nanosystem (TF‐CQ@mPdPt) is developed to enhance MPTT by simultaneous suppression of heat shock response and autophagy. TF‐CQ@mPdPt exhibits good peroxidase (POD)‐mimic activity and photothermal performance. As a result, the reactive oxygen species generated by POD‐mediated decomposition of endogenous hydrogen peroxide damage mitochondria, leading to limitation of adenosine triphosphate supply, which suppresses the upregulation of heat shock proteins of tumor cells during MPTT, making tumor cell more sensitive to heat stress. Concurrently, CQ released from TF‐CQ@mPdPt during MPTT inhibits cell autophagy, thereby interrupting the self‐repair pathway of tumor cells. Consequently, TF‐CQ@mPdPt‐mediated MPTT significantly enhances its therapeutic effect, effectively inhibiting tumor progression in 4T1 tumor‐bearing mice. This study presents a novel strategy to enhance MPTT by simultaneously suppressing heat shock response and autophagy.

Funder

National Basic Research Program of China

Natural Science Foundation of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3