Revisiting to N‐alkylation of multi‐dentate amines ligand for ATRP

Author:

Acar Metin H.1ORCID,Bekmez Murat1,Deniz Oya1,Inceoglu Sebnem1

Affiliation:

1. Department of Chemistry Istanbul Technical University Istanbul Turkey

Abstract

AbstractThe ligands role in normal atom transfer radical polymerization (ATRP) is not only for controlling the system but also regulate the rate of polymerization depending the solubility in the reaction media. Solubility of the catalyst/ligand complexes in organic media is of particular importance to attain homogeneous polymerization conditions. The linear multi‐dentate amine ligands with a long aliphatic chain on the nitrogen atoms provide solubility of its metal complexes in organic solvents. However, the increasing length of the alkyl substituents induces steric effects and can alter the redox potential of the metal center. Herein, to understand the effect of alkyl length, we report the synthesis of tri‐, tetra‐dentate linear amine ligands, diethylenetriamine, triethylenetetramine having n‐alkyl halides containing odd carbon chain lengths (C3H7‐, C5H9‐), respectively. Well‐defined polymers were obtained in ATRP of S and MMA using synthesized ligands. Apparently, increasing the alkyl chain length was sufficient to provide homogeneous ATRP medium, which was not achieved with methyl‐substituted ligands (e.g., pentamethyldiethylenetriamine, PMDETA and hexamethyltriethylenetetramine, HMTETA). In combining ATRP results for odd (synthesized) and even carbon number alkylated ligands (literature), linear decreasing trend was observed on apparent rate constant (kpapp) by the increasing the alkyl chain length.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3