A highly accurate and efficient Genocchi‐based spectral technique applied to singular fractional order boundary value problems

Author:

Izadi Mohammad1ORCID,Ansari Khursheed J.2ORCID,Srivastava Hari M.34567ORCID

Affiliation:

1. Department of Applied Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman Kerman Iran

2. Department of Mathematics, College of Science King Khalid University Abha Saudi Arabia

3. Department of Mathematics and Statistics University of Victoria Victoria British Columbia Canada

4. Department of Medical Research China Medical University Hospital, China Medical University Taichung Taiwan

5. Center for Converging Humanities Kyung Hee University Seoul Republic of Korea

6. Department of Applied Mathematics Chung Yuan Christian University Taoyuan City Taiwan

7. Department of Mathematics and Informatics Azerbaijan University Baku Azerbaijan

Abstract

This article focuses on an efficient and highly accurate approximate solver for a class of generalized singular boundary value problems (SBVPs) having nonlinearity and with two‐term fractional derivatives. The involved fractional derivative operators are given in the form of Liouville–Caputo. The developed algorithm for solving the generalized SBVPs consists of two main stages. The first stage is devoted to an iterative quasilinearization method (QLM) to conquer the (strong) nonlinearity of the governing SBVPs. Secondly, we employ the generalized Genocchi polynomials (GGPs) to treat the resulting sequence of linearized SBVPs numerically. An upper error estimate for the Genocchi series solution in the norm is obtained via a rigorous error analysis. The main benefit of the presented QLM‐GGPs procedure is that the required number of iteration in the first stage is within a few steps, and an accurate polynomial solution is obtained through computer implementations in the second stage. Three widely applicable test cases are investigated to observe the efficacy as well as the high‐order accuracy of the QLM‐GGPs algorithm. The comparable accuracy and robustness of the presented algorithm are validated by doing comparisons with the results of some well‐established available computational methods. It is apparently shown that the QLM‐GGPs algorithm provides a promising tool to solve strongly nonlinear SBVPs with two‐term fractional derivatives accurately and efficiently.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3