Affiliation:
1. Spine Surgery Department Beijing Jishuitan Hospital, Capital Medical University Beijing China
2. School of Biomedical Engineering Capital Medical University Beijing China
3. Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application Capital Medical University Beijing China
Abstract
AbstractBackgroundFor the spinal internal fixation procedures, connecting rods to the pedicle screws are commonly used in all spinal segments from the cervical to sacral spine. So far, we have only seen single vertebral screw trajectory planning methods in literatures. Joint screw placements in multi‐level vertebrae with the constraint of an ipsilateral connecting rod are not considered.PurposeIn this paper, a screw trajectory planning method that considers screw‐rod joint system with both multi‐level vertebral constraints and individual vertebral safety tolerance are proposed.MethodsThe proposed method addresses three challenging constraints jointly for multi‐level vertebral fixation with pedicle screws. First, a cylindrical screw safe passage model is suggested instead of a unique mathematical optimal trajectory for a single pedicle. Second, the flexible screw cap accessibility model is also included. Third, the connecting rod is modeled to accommodate the spine contour and support the needed gripping capacity. The retrospective clinical data of relative normal shape spines from Beijing Jishuitan hospital were used in the testing. The screw trajectories from the existing methods based on single vertebra and the proposed method based on multi‐level vertebrae optimization are calculated and compared.ResultsThe results showed that the calculated screw placements by the proposed method can achieve 88% success rate without breaking the pedicle cortex and 100% in clinical class A quality (allow less than 2 mm out of the pedicle cortex) compared to 86.1% and 99.1%, respectively, with the existing methods. Expert evaluation showed that the screw path trajectories and the connecting rod calculated by the new method satisfied the clinical implantation requirements.ConclusionsThe new screw planning approach that seeks an overall optimization for multi‐level vertebral fixation is feasible and more advantageous for clinical use than the single vertebral approaches.
Funder
Natural Science Foundation of Beijing Municipality
Ministerio de Ciencia y Tecnología
National Natural Science Foundation of China