Recent advances in polyethylene glycol as a dual‐functional agent in heterocycle synthesis: Solvent and catalyst

Author:

Servesh Anushka1,Lokesh Kumar S.1,Govindaraju Santhosh2,Tabassum Sumaiya3,Raj Prasad J.4,Kumar Niraj5,Ramaraj Sankar Ganesh67ORCID

Affiliation:

1. Department of Chemistry Christ University Bengaluru Karnataka India

2. Department of Sciences & Humanities Christ University Bengaluru Karnataka India

3. Department of Chemistry Surana College Bengaluru Karnataka India

4. Department of Civil Engineering, College of Engineering and Technology SRM Institute of Science and Technology Katankulathur Tamilnadu India

5. Department of Electronic & Communication Engineering Graphics Era Deemed to be University Dehradun Uttarakhand India

6. Department of Bioengineering, Graduate School of Engineering The University of Tokyo Tokyo Japan

7. Department of Materials Physics, Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMTS) Chennai Tamilnadu India

Abstract

AbstractReactant solubility, which dictates achievable concentrations, and the stability of reaction intermediates (excited states), solvents modulate the potential energy landscape and influence reaction rates. Consequently, solvent selection is pivotal in optimizing process productivity, economic feasibility, and environmental footprint. At present, organic synthesis pivots around the idea of sustainability. In particular, PEG‐400, a popular solvent and phase transfer catalyst, is considered greener as it can be reused several times without significant loss in its catalytic activity, which checks the box regarding sustainability. This review highlights the emerging potential of Polyethylene Glycol 400 (PEG‐400) as a dual‐threat agent in sustainable organic synthesis. We explore its efficacy as a catalyst, promoting various reactions under mild conditions and often eliminating the need for traditional metal catalysts. Additionally, PEG‐400's role as a green solvent is addressed, emphasizing its biodegradability, low toxicity, and ability to facilitate reactions without hazardous Volatile Organic Compounds (VOCs). The review examines recent research on PEG‐400 mediated reactions, showcasing its effectiveness in diverse transformations, thus exploring the potential of PEG 400 as a facilitator for heterocycle synthesis in both multicomponent reactions and stepwise approaches. It identifies exciting research directions that promise to expand the boundaries of polymer‐based solvents in heterocyclic chemistry.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3