Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect

Author:

Sun Quanhai1ORCID,Chen Guanyu1

Affiliation:

1. School of Electronic Engineering Chaohu University Hefei 238024 China

Abstract

Although a memristor model, subjected to electrochemical metallization mechanism, has been proposed based on the spontaneous decay of clusters in the previous work, it does not agree with the human forgetting accurately. Therefore, an improved model is meaningfully presented for the memristor with the cluster spontaneous decay by adding the residual effect. The former is due to the inward contraction of atoms driven by surface energy, while the latter is because of the balance of attractive and repulsive forces between atoms. The model fits well with the actual device. The forgetting is caused by the spontaneous decay. Memory retention is generated due to the added effect, which is also the internal cause of good agreement with the actual forgetting. Additionally, short‐term plasticity is converted to long‐term plasticity through the repeated learning. The efficiency of experiential learning using this model is much higher than that using the previous. It is shown that the physical mechanism of spontaneous decay in the cluster‐based channel is different from that in vacancy‐based or atom‐based channel. The model working under a non‐ideal condition with the temperature influence is discussed. Potential applications based on the model are stated.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3