Ni‐Alloyed Copper Iodide Thin Films: Microstructural Features and Functional Performance

Author:

Dethloff Christiane1,Thieme Katrin2,Selle Susanne2,Seifert Michael3,Vogt Sofie1,Splith Daniel1,Botti Silvana34,Grundmann Marius1,Lorenz Michael1

Affiliation:

1. Felix‐Bloch‐Institut für Festkörperphysik Universität Leipzig Linnéstr. 5 04103 Leipzig Germany

2. Optical Materials and Technology Fraunhofer Institute for Microstructure of Materials and Systems IMWS Walter‐Huelse‐Strasse 1 Halle (Saale) 06120 Germany

3. Institut für Festkörpertheorie und –optik Friedrich‐Schiller‐Universität Jena Max‐Wien‐Platz 1 07743 Jena Germany

4. Research Center Future Energy Materials and Systems of the Research Alliance Ruhr Faculty of Physics and ICAMS Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany

Abstract

To tailor electrical properties of often degenerate pristine CuI, Ni is introduced as alloy constituent. Cosputtering in a reactive, but also in an inert atmosphere as well as pulsed laser deposition (PLD), is used to grow thin films. The Ni content within the alloy thin films is systematically varied for different growth techniques and growth conditions. A solubility limit is evidenced by an additional phase for Ni contents , observed in X‐Ray diffraction and atomic force microscopy by a change in surface morphology. Furthermore, metallic, nanoscaled nickel clusters, revealed by X‐Ray photoelectron spectroscopy and high‐resolution transmission electron microscopy (HRTEM), underpin a solubility limit of Ni in CuI. Although no reduction of charge carrier density is observed with increasing Ni content, a dilute magnetic behavior of the thin films is observed in vibrating sample magnetometry. Further, independent of the deposition technique, unique multilayer features are observed in HRTEM measurements for thin films of a cation composition of . Opposite to previous claims, no transition to n‐type behavior was observed, which was also confirmed by density functional theory calculations of the alloy system.

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3