Phonon Polaritons Launched by Natural Boron Nitride Wrinkles Probed with Nano‐Fourier Transform Infrared Spectroscopy

Author:

Hertling Lukas12ORCID,Zahn Dietrich R. T.12ORCID

Affiliation:

1. Semiconductor Physics Chemnitz University of Technology 09107 Chemnitz Germany

2. Center for Materials, Architectures and Integration of Nanomembranes (MAIN) Chemnitz University of Technology 09107 Chemnitz Germany

Abstract

Nano‐fourier transform infrared spectroscopy (FTIR) is a powerful tool to measure optical and electronic properties of materials at the nanoscale. It is especially useful for visualizing plasmon and phonon polaritons launched from edges of a sample or structures on top of it. Herein, an exfoliated hexagonal boron nitride flake with a thickness of ≈16 nm is transferred onto a gold substrate. The flake is characterized by micro‐Raman and nano‐FTIR spectroscopy. The Raman spectra show no difference between points on the flat surface and points on the wrinkles of the flake. Nano‐FTIR spectra, while comparable to conventional infrared spectra on the flat surface, show a strong change in the form of a second absorption peak appearing near a wrinkle in the flake. This second absorption peak shifts to higher wavenumber and becomes more intense as the probed spot gets closer to the wrinkle. This is consistent with the behavior of phonon polaritons when approaching the scattering point that is reflecting them.

Funder

DFG

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3