Out‐of‐Plane Dynamics of a Novel Auxetic Honeycomb with an Anti‐Trichiral Hierarchy

Author:

Guang Xinlong1,Huang Huilan1,Deng Xiaolin2ORCID

Affiliation:

1. School of Mechanical Engineering Guangxi University Nanning 530004 China

2. School of Electronics and Information Engineering Wuzhou University Wuzhou 543002 China

Abstract

This study extensively characterizes the out‐of‐plane stiffness and energy harvesting capabilities of a newly proposed anti‐trichiral hierarchical auxetic honeycomb structure, both mechanically and deformationally. By introducing a design concept based on the anti‐trichiral honeycomb (ATCH), a structure with superior out‐of‐plane load‐carrying capacity and excellent auxeticity is achieved. To validate the finite element model, compression simulations are conducted. Comparative investigations into the morphing characteristics and energy harvesting performance between the novel structure and the ATCH are performed. Additionally, the influence of various parameters on the comprehensive performance of the novel auxetic structure is explored. It has been found that the angle φ is most sensitive to the auxetic properties, while the ratio k significantly impacts energy absorption. This research advances the design of novel auxetic structures for potential applications in protective engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3