Affiliation:
1. State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science Yanshan University Qinhuangdao 066004 P. R. China
Abstract
Two‐dimensional (2D) Janus materials are a fascinating class of materials resulting from their unique electronic and magnetic properties induced by mirror symmetry breaking. However, 2D Janus materials with intrinsic magnetism remain rather rare, casting a mysterious veil over magnetism. In this work, the electronic and magnetic properties of Janus Mn2GeX (X = As, Sb) monolayers using the first‐principles calculations are investigated. The results demonstrate that these Janus materials exhibit excellent mechanical and dynamic stability, indicating their potential for future applications in nanoscale spintronic devices. Interestingly, the Janus and monolayers possess exciting half‐metallic character with wide half‐metallic gaps of 0.29 and 0.18 eV, and spin gaps of 1.68 and 1.62 eV, respectively. Their calculated ground state exhibits a strong preference for ferromagnetic ordering, with a Curie temperature () of 630 and 590 K, respectively. Additionally, the ferromagnetism of Janus Mn2GeX (X = As, Sb) monolayers is robust against biaxial strain ranging from −6% to 6%. Under 6% tensile strain, the calculated of the monolayer is 639 K, which represents a 9% increase compared to the observed in the unstrained condition. All these intriguing electronic and magnetic properties make the Janus Mn2GeX (X = As, Sb) monolayers an appealing candidate for applications in nanoscale spintronic devices.
Funder
Natural Science Foundation of Hebei Province