Nonabelian flows in networks

Author:

van Gent D. M. H.1ORCID

Affiliation:

1. Mathematisch Instituut, Leiden University Leiden The Netherlands

Abstract

AbstractIn this work we consider a generalization of graph flows. A graph flow is, in its simplest formulation, a labelling of the directed edges with real numbers subject to various constraints. A common constraint is conservation in a vertex, meaning that the sum of the labels on the incoming edges of this vertex equals the sum of those on the outgoing edges. One easy fact is that if a flow is conserving in all but one vertex, then it is also conserving in the remaining one. In our generalization we do not label the edges with real numbers, but with elements from an arbitrary group, where this fact becomes false in general. As we will show, graphs with the property that conservation of a flow in all but one vertex implies conservation in all vertices are precisely the planar graphs.

Publisher

Wiley

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics

Reference8 articles.

1. M.DeVos Flows on graphs Ph.D. Thesis Princeton University 2000.

2. R. Diestel Graph theory 5th ed. Springer  2017.

3. On straight line representation of planar graphs;Fáry I.;Acta Sci. Math,1948

4. A Tutte Polynomial for Maps

5. Efficient Planarity Testing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3