Using weight of evidence to assess degradation potential of UVCB hydrocarbon solvents

Author:

Prosser Christopher M.1,Davis Craig W.1,Bragin Gail E.1,Camenzuli Louise2

Affiliation:

1. ExxonMobil Biomedical Sciences Inc. Annandale New Jersey USA

2. ExxonMobil Petroleum & Chemical B.V. Machelen Belgium

Abstract

AbstractHydrocarbon solvents are a diverse group of petrochemical substances that are identified as unknown or variable composition, complex reaction products, or biological materials (UVCBs) and may contain tens of thousands of individual chemical constituents. As such, it is generally not possible to analytically resolve every chemical constituent in a hydrocarbon solvent. This, along with the low water solubility and/or high vapor pressure of constituents, precludes the use of many standardized tests designed to determine biodegradation in the environment (e.g., Organization for Economic Co‐operation and Development [OECD] 309). A weight of evidence approach may be needed to reduce uncertainty to an acceptable level such that a determination on the biodegradation of the substance can be drawn. Based on the OECD 2019 weight of evidence guidance, we present a framework using various lines of evidence that can be used to evaluate the biodegradation of a UVCB solvent in a weight of evidence approach. The lines of evidence include whole substance testing, data on representative constituents, quantitative structure activity relationship (QSAR) models, and biological plausibility. Using these lines of evidence, “Hydrocarbon, C11–C14, normal alkane, isoalkane, cyclic, <2% aromatics” (EC# 926‐141‐6) was evaluated in a case study. Data from three whole substance tests, 43 constituents (representing 152 data points), three QSAR models and evidence of microbial degradation pathways were evaluated. Based on the available data, it is concluded that the solvent for the case study is not expected to persist in the environment. This framework sets out a real‐world example of how the weight of evidence can be used to evaluate hydrocarbon solvents. While focused on persistence, similar approaches can be used to evaluate other endpoints such as bioaccumulation and toxicity. Integr Environ Assess Manag 2023;19:1120–1130. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Publisher

Wiley

Subject

General Environmental Science,General Medicine,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3