A physics‐based spectral matching (PBSM) method for generating fully site‐related ground motions

Author:

Wang Xiang‐Chao1,Wang Jin‐Ting1ORCID

Affiliation:

1. Department of Hydraulic Engineering Tsinghua University Beijing China

Abstract

AbstractThe response spectrum is generally adopted in the seismic design to represent the seismic fortification level, but the structural dynamic analysis requires the ground motions as an input. However, ground motions generated by the traditional spectral matching methods do not have site‐related physical backgrounds for the target site. In this study, a physics‐based spectral matching (PBSM) method is developed to generate fully site‐related broadband ground motions (i.e., the generated ground motions have real physical backgrounds for the target site, including the source process, propagation path, and local site conditions) that are compatible to the target spectrum. In this method, the three‐dimensional (3D) numerical model around the target site is constructed to calculate the strain Green's tensors of all potential source locations using adjoint simulations. The variable space dimension of the seismic source is significantly reduced by applying the self‐similar feature of the multidimension source model, so that the optimization algorithm can be used to search for the rupture process that generates the physics‐based and spectrum‐matched ground motions (abbreviated to PBSM ground motions). The proposed method is applied to the Xiluodu dam in China. Compared with the traditional techniques, the generated ground motions have fully site‐related physical backgrounds and are compatible to the target spectrum. Additionally, as this method generates broadband ground motions based on the deterministic rupture process, any features of ground motions, such as large velocity pulses, can be taken into account throughout the optimization process. This study introduces the deterministic physical backgrounds of earthquakes to performance‐based seismic design and analysis. The proposed method may have a significant application potential in earthquake engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3