Atomic Precise Gold Nanoclusters: Toward the Customize Synthesis, Precision Medicine

Author:

Liu Haile1ORCID,Wang Lihui1,Xue Zhonghua1,Zhang Xiao‐Dong23

Affiliation:

1. Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou 730070 China

2. Tianjin Key Laboratory of Brain Science and Neural Engineering Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin 300072 China

3. Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Sciences Tianjin University Tianjin 300350 P. R. China

Abstract

AbstractWith the advantages of controllable atomic composition, unique molecular‐like properties, and excellent biocompatibility, atomic precision Au cluster is an ideal candidate for developing materials with customized biological functions to meet the needs of precision medicine. To achieve the rational design of functional materials through structural regulation at the atomic level, it is important to clarify the relationship between the structure and properties of Au clusters. With the development of synthesis methodology, a variety of structural regulation methods of Au clusters have been developed, providing new opportunities for structure–activity relationship establishment and precision medicine application. This review introduces the synthesis and structure regulation methods of atomic precision Au clusters, and the effects of structural regulation on the physicochemical properties are further described. At the same time, the applications of Au clusters in precision medicine, including the detection of biomolecules, functional imaging, and disease therapy are discussed, as well as the recent studies around their biosafety. At last, it also briefly summarizes the current problems and development directions. The present work provides potential theoretical guidance for the rational design of Au clusters with customized biological functions and is of great significance for broadening their applications in the field of precision medicine.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3