Enhanced Antibacterial and Antibiofilm Activities of Actinobacterial Therapeutic Metabolites Mediated Nanosuspension

Author:

Singh Shelly1,Sharma Shilpa1ORCID,Dubey Ashok K.1

Affiliation:

1. Department of Biological Sciences and Engineering Netaji Subhas University of Technology Dwarka Sector‐3 New Delhi 110078 India

Abstract

AbstractThe escalation in infections from World Health Organization (WHO)‐listed priority pathogens has made development of new antibacterial agents a critical priority. In this context, use of therapeutic secondary metabolites (SMs) from Actinobacteria as new drugs presents a promising avenue. However, majority of them fail to reach market due to low aqueous solubility and hence low bioavailability. Even though nanosuspension technology has been effectively used to address these challenges, use of this technology for nanox02010;listed priority pathogens has made development of new antibacterial agents a critical priority. In thitransformation of crude metabolites from Actinobacteria is still an unattempted area. Herein, for the first time, development of water‐soluble nanosuspension of water‐insoluble therapeutic metabolites produced by Streptomyces californicus strain ADR1 to develop a biocompatible material to be used as potential nanomedicine is reported. The nanosuspension (N‐SM) is characterized by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The nanosuspension reduces the MIC values by 50% against Gram‐positive priority pathogens and eradicates established biofilms with fivefold efficiency incomparison to SMs. The nanosuspension also displays antioxidant activity. The findings open up future possibilities of using this novel nanosuspension as an effective antibacterial agent in various therapeutic and biomedical applications like wound dressings, coatings on medical equipment, and surgical implants.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3