Evaluation of generalization ability for deep learning‐based auto‐segmentation accuracy in limited field of view CBCT of male pelvic region

Author:

Hirashima Hideaki1,Nakamura Mitsuhiro12,Imanishi Keiho3,Nakao Megumi4,Mizowaki Takashi1

Affiliation:

1. Department of Radiation Oncology and Image‐Applied Therapy Graduate School of Medicine Kyoto University Sakyo‐ku Kyoto Japan

2. Department of Advanced Medical Physics Graduate School of Medicine Kyoto University Sakyo‐ku Kyoto Japan

3. e‐Growth Co., Ltd. Kyoto‐shi Kyoto Japan

4. Department of Advanced Medical Engineering and Intelligence Graduate School of Medicine Kyoto University Sakyo‐ku Kyoto Japan

Abstract

AbstractPurposeThe aim of this study was to evaluate generalization ability of segmentation accuracy for limited FOV CBCT in the male pelvic region using a full‐image CNN. Auto‐segmentation accuracy was evaluated using various datasets with different intensity distributions and FOV sizes.MethodsA total of 171 CBCT datasets from patients with prostate cancer were enrolled. There were 151, 10, and 10 CBCT datasets acquired from Vero4DRT, TrueBeam STx, and Clinac‐iX, respectively. The FOV for Vero4DRT, TrueBeam STx, and Clinac‐iX was 20, 26, and 25 cm, respectively. The ROIs, including the bladder, prostate, rectum, and seminal vesicles, were manually delineated. The U2‐Net CNN network architecture was used to train the segmentation model. A total of 131 limited FOV CBCT datasets from Vero4DRT were used for training (104 datasets) and validation (27 datasets); thereafter the rest were for testing. The training routine was set to save the best weight values when the DSC in the validation set was maximized. Segmentation accuracy was qualitatively and quantitatively evaluated between the ground truth and predicted ROIs in the different testing datasets.ResultsThe mean scores ± standard deviation of visual evaluation for bladder, prostate, rectum, and seminal vesicle in all treatment machines were 1.0 ± 0.7, 1.5 ± 0.6, 1.4 ± 0.6, and 2.1 ± 0.8 points, respectively. The median DSC values for all imaging devices were ≥0.94 for the bladder, 0.84–0.87 for the prostate and rectum, and 0.48–0.69 for the seminal vesicles. Although the DSC values for the bladder and seminal vesicles were significantly different among the three imaging devices, the DSC value of the bladder changed by less than 1% point. The median MSD values for all imaging devices were ≤1.2 mm for the bladder and 1.4–2.2 mm for the prostate, rectum, and seminal vesicles. The MSD values for the seminal vesicles were significantly different between the three imaging devices.ConclusionThe proposed method is effective for testing datasets with different intensity distributions and FOV from training datasets.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3