Network meta analysis to predict the efficacy of an approved treatment in a new indication

Author:

Proper Jennifer L.1ORCID,Chu Haitao2,Prajapati Purvi3,Sonksen Michael D.3,Murray Thomas A.1

Affiliation:

1. Division of Biostatistics University of Minnesota Twin Cities Minneapolis Minnesota USA

2. Statistical Research and Data Science Center Pfizer Inc New York New York USA

3. Statistical Innovation Center Eli Lilly and Company Indianapolis Indiana USA

Abstract

AbstractDrug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally‐intensive analytical methods that are not widely used in practice. Instead, repurposing decisions are often based on subjective judgments from limited empirical evidence. In this article, we develop a novel Bayesian network meta‐analysis (NMA) framework that can predict the efficacy of an approved treatment in a new indication and thereby identify candidate treatments for repurposing. We obtain predictions using two main steps: first, we use standard NMA modeling to estimate average relative effects from a network comprised of treatments studied in both indications in addition to one treatment studied in only one indication. Then, we model the correlation between relative effects using various strategies that differ in how they model treatments across indications and within the same drug class. We evaluate the predictive performance of each model using a simulation study and find that the model minimizing root mean squared error of the posterior median for the candidate treatment depends on the amount of available data, the level of correlation between indications, and whether treatment effects differ, on average, by drug class. We conclude by discussing an illustrative example in psoriasis and psoriatic arthritis and find that the candidate treatment has a high probability of success in a future trial.

Funder

U.S. National Library of Medicine

Publisher

Wiley

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3