Congruence of cycle lengths and chromatic number

Author:

Cordero‐Michel Narda1ORCID,Galeana‐Sánchez Hortensia1

Affiliation:

1. Instituto de Matemáticas Universidad Nacional Autónoma de México Mexico City Mexico

Abstract

AbstractIn this paper we obtain the following upper bound for the chromatic number of a graph : Let be a connected graph with at least one cycle and an integer, with . If is the length of a longest cycle in whose length is congruent to 1 modulo , and is the length of a shortest cycle in whose length is congruent to 1 modulo , then . This generalizes a theorem by Diwan et al. Moreover, we give a polynomial time algorithm to get a proper coloring with such number of colors. Additionally, we give other upper bounds for the chromatic number of a graph, in terms of its cycle lengths. We also give a method to obtain the minimum , for which a graph satisfies the hypotheses of the following two outstanding theorems: (1) Let be a graph, if for some positive integer with contains no cycle of length 1 modulo , then is ‐colorable, Tuza; (2) Let be a graph, if contains no cycle of length modulo for some integers and with and , then is ‐colorable if and ‐colorable otherwise, Chen et al. So we get the best bound that each one of these two results allows.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Wiley

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3