Design and optimization of metformin solid lipid microparticles for topical application

Author:

Mancer Daya1,Agouillal Farid234,Daoud Kamel1

Affiliation:

1. Laboratory of Transfer Phenomena Faculty of Mechanical and Process Engineering University of Science and Technology Houari Boumediene (USTHB) Algiers Algeria

2. Centre de Recherche Scientifique et Technique en Analyses Physico‐Chimiques, CRAPC Tipaza Algeria

3. Unité de Recherche en Analyses Physico‐Chimiques des Milieux Fluides et Sols, URAPC‐MFS/CRAPC Algiers Algeria

4. Laboratory of Reaction Engineering Faculty of Mechanical and Process Engineering University of Science and Technology Houari Boumediene (USTHB) Algiers Algeria

Abstract

AbstractThis study aimed to improve metformin skin administration by creating solid lipid microparticles (SLMs). To obtain optimal metformin delivery, SLMs were created using a double emulsion hot homogenization technique with a rotor‐stator. The effects of the two surfactants and homogenization time on particle characteristics and performance were studied using Response Surface Methodology (RSM). Tween 60 concentration had the most significant effect on particle size. The simple effects of the studied factors did not significantly affect encapsulation efficiency. However, the interactions between these parameters influenced this response. Moreover, the particle size was affected more by the surfactant concentration. After optimizing the three factors, the results showed an optimum encapsulation efficiency of 82% and a particle size of 2 µm with a desirability of 0.915. The topical drug release profile of lipid microparticle suspensions is characterized by an early burst, followed by sustained drug release. The release of metformin from solid lipid particles followed the Higuchi release model, whereas it followed the Weibull model for release from the gel formulation. Based on the in vitro drug release results, we can conclude that the particles containing the drug are in the shape of a matrix.Practical Applications: The SLM formulation produces a film on the cutaneous surface, retaining the active component in the skin's superficial layer. Furthermore, owing to their micron size, SLM increases the contact surface of the encapsulated drug with the stratum corneum, which might improve cutaneous delivery and provide sustained release of the drug.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3