Thermophysical evolution during different decompression of N2‐containing S‐CO2 pipelines

Author:

Yang Kai1,Chen Lei12,Hu Yanwei1,Yan Xingqing1,Yu Shuai1,Yu Jianliang1,Chen Shaoyun12

Affiliation:

1. School of Chemical Engineering Dalian University of Technology Dalian PR China

2. School of Chemical Engineering Xinjiang University Urumqi PR China

Abstract

AbstractPipelines transporting impure supercritical carbon dioxide in the carbon capture, utilization, and storage (CCUS) chain exhibit varying decompression characteristics due to engineered emissions or accidental leakage, resulting in diverse temperature drops and heat transfer mechanisms in the media and pipe walls. Therefore, studying heat transfer characteristics during slow and instantaneous decompression is crucial to investigating pipeline operational risks. In this work, supercritical CO2 pipeline valve release and rupture disc release experiments were performed with a 1.5% molar ratio of N2 content in an experimental pipeline (16 m long, 100 mm inner diameter). The evolution of the medium and pipe wall's physical properties was measured and discussed. Two methods of depressurization were employed to analyze the phase changes and heat transfer processes in the pipe. The instantaneous decompression process has a shorter decompression time and undergoes fluctuating and stable decompression stages. The slow decompression process has a slower temperature drop rate, but the wall during the process can reach a lower minimum temperature. Both release methods cause a larger temperature drop and Nusselt number at the bottom of the pipe wall due to evaporation heat transfer compared to the middle and top. The slow decompression process demonstrates a higher peak Nusselt number at the bottom, resulting in superior heat transfer efficiency compared to the instantaneous decompression process. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Publisher

Wiley

Subject

Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3