Stem-Like Ovarian Cancer Cells Can Serve as Tumor Vascular Progenitors

Author:

Alvero Ayesha B.1,Fu Han-Hsuan1,Holmberg Jennie1,Visintin Irene1,Mor Liora1,Marquina Carlos Cano1,Oidtman Jessica1,Silasi Dan-Arin1,Mor Gil1

Affiliation:

1. Department of Obstetrics and Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, Connecticut, USA

Abstract

Abstract Neovascularization is required for solid tumor maintenance, progression, and metastasis. The most described contribution of cancer cells in tumor neovascularization is the secretion of factors, which attract various cell types to establish a microenvironment that promotes blood vessel formation. The cancer stem cell hypothesis suggests that tumors are composed of cells that may share the differentiation capacity of normal stem cells. Similar to normal stem cells, cancer stem cells (CSCs) have the capacity to acquire different phenotypes. Thus, it is possible that CSCs have a bigger role in the process of tumor neovascularization. In this study, we show the capacity of a specific population of ovarian cancer cells with stem-like properties to give rise to xenograft tumors containing blood vessels, which are lined by human CD34+ cells. In addition, when cultured in high-density Matrigel, these cells mimic the behavior of normal endothelial cells and can form vessel-like structures in 24 hours. Microscopic analysis showed extensive branching and maturation of vessel-like structures in 7 days. Western blot and flow cytometry analysis showed that this process is accompanied by the acquisition of classic endothelial markers, CD34 and VE-cadherin. More importantly, we show that this process is vascular endothelial growth factor–independent, but IKKβ-dependent. Our findings suggest that anti-angiogenic therapies should take into consideration the inherent capacity of these cells to serve as vascular progenitors.

Funder

NCI/NIH

The Janet Burros Memorial Foundation

The Sands Family Foundation

Discovery To Cure Research Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3