Ultra‐Long and Rapid Operating Sodium Metal Batteries Enabled by Multifunctional Polarizable Interface Stabilizer

Author:

Jun Seo‐Young1,Shin Kihyun2,Son Chae Yeong1,Kim Suji1,Park Jimin3,Kim Hyung‐Seok456,Hwang Jang‐Yeon37,Ryu Won‐Hee18ORCID

Affiliation:

1. Department of Chemical and Biological Engineering Sookmyung Women's University 100 Cheongpa‐ro 47‐gil, Yongsan‐gu Seoul 04310 Republic of Korea

2. Department of Materials Science and Engineering Hanbat National University Daejeon 34158 Republic of Korea

3. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea

4. Energy Storage Research Center Korea Institute of Science and Technology 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea

5. Division of Energy & Environment Technology KIST School, Korea University of Science and Technology (UST) Hwarang‐ro 14‐gil‐5, Seongbuk‐gu Seoul 02792 South Korea

6. KHU‐KIST Department of Converging Science and Technology Kyung Hee University Seoul 130701 Republic of Korea

7. Department of Battery Engineering Hanyang University Seoul 04763 Republic of Korea

8. Institute of Advanced Materials and Systems Sookmyung Women's University 100 Cheongpa‐ro 47‐gil Yongsan‐gu Seoul 04310 Republic of Korea

Abstract

AbstractAbundant and economical sodium (Na) metal batteries promise superior energy densities compared to lithium‐ion batteries; however, they face commercialization challenges owing to problematic interfacial reactions leading to dendrite formation during cycling. This paper reports the ultra‐long and rapid operation of Na metal batteries enabled by the introduction of a vinylpyrrolidone (VP)‐based multifunctional interface stabilizer in the electrolyte. The VP electrolyte additive provides benefits such as surface flattening, durable solid electrolyte interphase layer formation, preservation of fresh Na, and acceleration of horizontal crystal growth along the (110) plane. Symmetric Na–Na cells with the stabilizer exhibit notably stable operation for over 5 000 cycles at a high current density of 5 mA cm−2, surpassing previous research. Performance improvement is also demonstrated in a full‐cell configuration with an Na3V2(PO4)2O2F cathode. This approach offers a promising solution for achieving performance levels comparable to lithium‐ion batteries in Na metal battery technology.

Funder

National Research Foundation of Korea

Korea Institute of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3