Adaptive Multi‐Site Gradient Adsorption of Siloxane‐Based Protective Layers Enable High Performance Lithium‐Metal Batteries

Author:

Fang Shan123,Wu Fanglin23,Zhao Shangquan1,Zarrabeitia Maider23,Kim Guk‐Tae234,Kim Jae‐Kwang4,Zhou Naigen1,Passerini Stefano235ORCID

Affiliation:

1. School of Physics and Materials Nanchang University Nanchang Jiangxi 330031 P. R. China

2. Helmholtz Institute Ulm (HIU) Helmholtzstrasse 11 89081 Ulm Germany

3. Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany

4. Department of Energy Convergence Engineering Cheongju University Cheongju Chungbuk 28503 Republic of Korea

5. Chemistry Department Sapienza University of Rome Piazzale a. Moro 5 Rome 00185 Italy

Abstract

AbstractLow Coulombic efficiency and significant capacity decay resulting from an unstable solid electrolyte interphase (SEI) and dendritic growth pose challenges to the practical application of lithium‐metal batteries. In this study, a highly efficient protection layer induced by octaphenylsilsesquioxane (OPS) with LiFSI salt is investigated. The OPS exhibits a strong adsorption energy with lithium, its multi‐site gradient adsorption ability enables the simultaneous capture of 8 Li+ and the uniform regulation of Li ion flux. Moreover, the mechanical strength and electronic insulation of the OPS layer induces Li deposition under the protection layer and effectively inhibits lithium dendrite growth. Such a protection layer contributes to the stable and dendrite‐free performance of a lithium‐metal battery employing LiNi0.8Co0.1Mn0.1O2 (NCM811) as a cathode and an ultrathin OPS‐protected lithium foil (20 µm) as the anode. A remarkable capacity retention of 91.4% is achieved after 300 cycles at 1C. The OPS‐protected Li anodes and NCM811 are also tested in combination with a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, showing extended cyclability up to 300 cycles with an average Coulombic efficiency of 99.58% and capacity retention of 85.7%.

Funder

National Natural Science Foundation of China

Helmholtz Association

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3