Bridging the Gap between Solar Cells and Batteries: Optical Design of Bifunctional Solar Batteries Based on 2D Carbon Nitrides

Author:

Gouder Andreas12ORCID,Yao Liang1ORCID,Wang Yang1ORCID,Podjaski Filip13ORCID,Rabinovich Ksenia S.1,Jiménez‐Solano Alberto14ORCID,Lotsch Bettina V.125ORCID

Affiliation:

1. Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany

2. Department of Chemistry Ludwig‐Maximilians‐University (LMU) Butenandstr. 5‐13 81377 Munich Germany

3. Department of Chemistry Imperial College of London London W12 0BZ UK

4. Departamento de Física Universidad de Córdoba Campus de Rabanales Edificio Einstein (C2) Córdoba 14071 Spain

5. e‐conversion Lichtenbergstr. 4a 85748 Garching Germany

Abstract

AbstractWhile solar cell technology is booming, intermittent availability of sunlight motivates new vistas for multifunctional devices capable of energy capture and storage on the same material, i.e., direct or two‐electrode bifunctional solar batteries. Herein, simulations and experiments are utilized to take a closer look at efficiency limitations and design considerations, and guidelines are proposed to operate a solar battery comprised of the 2D carbon nitride potassium poly(heptazine imide), K‐PHI, as a bifunctional solar battery photoanode in conjunction with the separator poly(N‐vinylcarbazole) and cathode poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. An optical design of this device is developed by proposing light absorption in a charge collection layer within the photoanode and calculating photocharging current and charging time as figures of merit. The much larger efficiency of operation via rear illumination for K‐PHI layer thicknesses >200 nm is highlighted and enhancement strategies without modifying the photoactive layer are proposed. Finally, adapted Ragone plots are introduced and it is shown how the solar batteries are capable of improving energy and charge output solely via illumination (for the design under 1 sun, the energy and charge output increase by 60% and 63%, respectively) without modifying the device.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3