Amorphous TiO2 Passivating Contacts for Cu(In,Ga)(S,Se)2 Ultrathin Solar Cells: Defect‐State‐Mediated Hole Conduction

Author:

Park Gi Soon12ORCID,Lee SeungJe3,Kim Da‐Seul12ORCID,Park Sang Yeun12,Koh Jai Hyun1ORCID,Won Da Hye1,Lee Phillip4,Do Young Rag3,Min Byoung Koun12ORCID

Affiliation:

1. Clean Energy Research Division Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

2. Graduate School of Energy and Environment Korea University Seoul 02841 Republic of Korea

3. Department of Chemistry Kookmin University Seoul 02707 Republic of Korea

4. Photo‐electronic Hybrids Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

Abstract

AbstractUltrathin solar cells (UTSCs) have attracted much research attention because of their superior potential for low‐cost production and diverse applications. For UTSCs to achieve high efficiency, rear‐interface passivation is critical because it has greater influence on thinner absorbers. Conventional passivation layers (e.g., Al2O3 and SiO2) inevitably require patterned contact openings for electrical conduction, the complex processing of which severely impedes the scale‐up production of UTSCs. Herein, this study reports that amorphous TiO2 layers can act as a passivating contact, which not only passivates defective rear‐interfaces but also provides excellent electrical conduction, for solution‐processed Cu(In,Ga)(S,Se)2 UTSCs. The amorphous nature of TiO2 layers is found to play a key role in achieving desirable ohmic conduction over the entire area without any contact openings. Holes in absorbers easily move into amorphous TiO2 layers, even in the presence of large valence band offset (2.6 eV), proving that the defect states within these TiO2 layers act as hole conduction pathways. While control devices experience huge open‐circuit voltage (VOC) losses (−303 mV) after reduction of absorber thickness from 750 to 300 nm, devices with amorphous TiO2 layers exhibit VOC gains (+8 mV), encouraging the realization of high‐efficiency UTSCs with a simple, easily scalable, and highly reproducible process.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3