Affiliation:
1. Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis Department of Applied Chemistry Zhejiang University of Technology Hangzhou 310014 P. R. China
2. College of Physics and Electronics Information Yunnan Key Laboratory of Optoelectronic Information Technology Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials Ministry of Education Yunnan Normal University Kunming 650500 P. R. China
3. Department of Materials Science State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
Abstract
AbstractElectrocatalytic biomass valorization coupled with hydrogen production provides an efficient and economical way to achieve a zero‐carbon economy. Ni‐based electrocatalysts are promising candidates due to their intrinsic redox capabilities, but the rational design of active Ni site coordination is still a huge challenge. Herein, the combined strategies of surface reconstruction and heteroatom doping are adopted to modify Ni3S2 pre‐catalysts and the obtained bimetallic catalyst exhibits superior electrocatalytic performance toward 5‐hydroxymethylfurfural (HMF) oxidation to 2,5‐furanedicarboxylic acid (FDCA). Specifically, the oxysulfide‐coordinated amorphous NiOOH (NiOOH‐SOx) active phase is in situ constructed following the anionic regulation mechanism, which endows numerous defects and unsaturated sites for anodic HMF oxidation. Cu heteroatom doping further modulates the electronic structure of active sites with abundant Lewis acidic sites, offering advanced capability for HMF adsorption. Several operando characterization techniques (in situ Raman, infrared, and electrochemical impedance spectroscopies) are performed to disclose the reaction pathway and structure‐activity‐potential relationship. Theoretical results further demonstrate that Cu doping and oxyanionic regulation effectively modulate the local coordination environment of Ni sites and correspondingly tailor the intermediate adsorption behavior and then promote the reaction kinetics. Moreover, a two‐electrode system is assembled to pair HMF oxidation with cathode hydrogen production, demonstrating better energy conversion efficiency.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献