Affiliation:
1. School of Mechanical Engineering Guizhou University Guiyang Guizhou 550025 PR China
2. School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
3. Yibin Research Institute Southwest Jiaotong University Yibin 610031 P. R. China
4. Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Hongkong China
Abstract
AbstractWith the rapid development of the Internet of Things (IoTs), numerous distributed wide‐area low‐power electronic devices have been utilized in various fields, such as wireless monitoring sensors and wearable electronics. Due to the dispersion and mobility of microelectronic devices, their energy supply faces serious challenges. The inconvenience and non‐environmental friendliness of using traditional centralized low entropy energy and chemical batteries to power distributed microelectronic devices are becoming increasingly prominent. Environmental energy harvesting technology with high entropy characteristics is considered an effective solution for low‐power electronic devices. This paper comprehensively reviews the recent progress in microelectronic technologies based on energy harvesting and signal sensing. First, state‐of‐the‐art micro‐power electronic devices in humans, animals, and the environment are introduced. Secondly, the available micro‐energy sources in the environmentare elaborated and summarized. Then, the principles and characteristics of ambient microenergy harvesting technologies based on different mechanisms are classified, summarized, and analyzed. In addition, this work comprehensively summarizes the applications of self‐powered micro‐electronics technology in 11 different fields, including human, animal, and environment. Finally, research challenges, technical difficulties, and research gaps in self‐powered microelectronics based on micro‐energy harvesting technology are discussed and summarized.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献