Dual Effects of Metal and Organic Ions Co‐Intercalation Boosting the Kinetics and Stability of Hydrated Vanadate Cathodes for Aqueous Zinc‐Ion Batteries

Author:

Zong Quan12,Zhuang Yanling1,Liu Chaofeng3,Kang Qiaoling1,Wu Yuanzhe1,Zhang Jingji1,Wang Jiangying1,Tao Daiwen2,Zhang Qilong2,Cao Guozhong4ORCID

Affiliation:

1. College of Materials and Chemistry China Jiliang University Hangzhou Zhejiang 310018 P. R. China

2. State Key Lab of Silicon Materials Zhejiang University Hangzhou Zhejiang 310027 P. R. China

3. School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China

4. Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA

Abstract

AbstractFor the development of aqueous zinc‐ion batteries, exploiting vanadium‐based cathode materials with quick kinetics and acceptable cycling stability is crucial. Herein, to achieve these goals, transition metal ions (Zn2+) and organic ions (C5H14ON+ and Ch+) are introduced into layered hydrated V2O5. The intrinsic high conductivity of Ch+ and the oxygen vacancies generated through ion pre‐intercalation accelerate the electrical mobility by optimizing the electronic structure. The Zn2+ stabilizes the layered structure and the expanded interlayer spacing improves the ionic diffusivity. The synergistic effect of pre‐intercalated Zn2+ and Ch+ results in the (Zn0.1, Ch0.1)V2O4.92·0.56H2O cathode exhibiting a discharge capacity of 473 mAh g−1 at 0.1 A g−1 with a high energy efficiency of 88% and excellent cycling stability with 91% retention after 2000 cycles at 4 A g−1. Ex situ characterizations and density functional theory calculations reveal a reversible intercalation mechanism of Zn2+, and the improved electrochemical kinetics are attributed to the altered electronic conductivity and the reduced binding energy between Zn2+ and host O2−.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3