Vacancy Mediated Electrooxidation of 5‐Hydroxymethyl Furfuryl Using Defect Engineered Layered Double Hydroxide Electrocatalysts

Author:

Zubair Muhammad1,Usov Pavel M.2,Ohtsu Hiroyoshi2,Yuwono Jodie A.3,Gerke Carter S.4,Foley Gregory D. Y.4,Hackbarth Haira1,Webster Richard F.5,Yang Yuwei1,Lie William Hadinata1,Ma Zhipeng1,Thomsen Lars6,Kawano Masaki2,Bedford Nicholas M.1ORCID

Affiliation:

1. School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

2. Department of Chemistry School of Science Tokyo Institute of Technology 2‐12‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan

3. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

4. Department of Chemistry Johns Hopkins University Baltimore MD 21218 USA

5. Mark Wainwright Analytical Centre, Electron Microscope Unit The University of New South Wales Sydney NSW 2052 Australia

6. Australian Synchrotron ANSTO 800 Blackburn Road Clayton VIC 3168 Australia

Abstract

AbstractElectrochemical biomass oxidation coupled with hydrogen evolution offers a promising route to generate value‐added chemicals and clean energy. The complex adsorption behavior of 5‐hydroxymethyl furfural (HMF) and hydroxyl ions (OH) on the electrocatalyst surface during HMF electrooxidation reaction (HMFOR) necessitates an in‐depth understanding of active sites available for adsorption. Herein, oxygen vacancy (VO) defects are introduced in NiFe layered double hydroxide (LDH) using Ce dopants to manipulate electronic structure. Synchrotron‐based HE‐XRD and XAS indicate negligible VO in La‐doped NiFe while Ce doping leads to VO defects due to flexible Ce redox (Ce3+↔ Ce4+). The VO‐rich Ce‐NiFe exhibits higher Faradic efficiency of ≈90% to produce 2,5‐furan dicarboxylic acid (FDCA), far greater than ≈60% for NiFe VO in Ce‐NiFe act as alternative active sites for OH adsorption, hence reducing adsorption competition for the same metal sites. DFT calculation results corroborate experimental findings by showcasing that the presence of VO in Ce‐NiFe manipulates the adsorption energies and facilitates the chemical adsorption OH in VO to improve HMFOR. In situ HE‐XRD derived pair distribution function coupled to RMC simulations confirm OH trapping in VO and HMF adsorption on metal centers as evident by interlayer distance evolution. Taken together, this work showcases routes for dual‐site electrocatalyst design for improved biomass electrooxidation.

Funder

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3