Renewing Fundamental Understanding of Ionic Transport in Inorganic Crystalline Solid‐State Electrolytes from the Perspective of Lattice Dynamics

Author:

Song Tao1,Lin Yuxiao2,Wang Da1,Chen Qianli3,Ling Chen4,Shi Siqi156ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai University Shanghai 200444 China

2. School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou 221116 China

3. University of Michigan–Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai 200240 China

4. Toyota Research Institute of North America Ann Arbor MI 48105 USA

5. Materials Genome Institute Shanghai University Shanghai 200444 China

6. Zhejiang Laboratory Hangzhou 311100 China

Abstract

AbstractLattice dynamics has been widely employed to study various properties of crystalline materials, by revealing the atomic vibration rules with phonon dispersion curves. Modulating lattice‐dynamics‐related factors is an emerging trend in the design of inorganic crystalline solid‐state electrolytes (ICSSEs) with promoted ionic conductivity. Nevertheless, due to complicated interplay of these enormous factors, fundamental understanding of lattice‐dynamics‐influenced ionic transport is still limited. In this review, all related factors are classified into lattice static and dynamic ones based on their variability in ionic transport process, facilitating a methodological evaluation of their individual and interrelated influences. The previous efforts are affirmed to design ICSSEs by constructing potential energy surfaces for ionic transport based on lattice static factors (e.g., ionic arrangement, time‐scale dependent ionic concentration, and lattice softening). As for lattice dynamic factors, the possibility to quantify ionic transport activation energy and to screen the type of migration ions by phonon frequency and amplitude, respectively is validated. Specifically, it is highlighted that the optimization of specific phonon mode and the coupling of both lattice static and dynamic factors are essential to achieve superior ionic transport in ICSSEs. Finally, challenges and opportunities are pointed out in this field, which can potentially guide the future development of ICSSEs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3