A Low‐Cost Al(OH)3‐Modified Fire‐Retardant and Shuttle‐Limiting Separator for Safe and Stable Lithium–Sulfur Batteries

Author:

Zhou Junhua1,Zhang Chi2,Xie Chuan2,Wang Huimin2,Fan Haining2,Guo Yanpeng2,Wang Chao2,Chen Fan1,Ding Yichun1,Huang Qiyao13,Zheng Zijian1234ORCID

Affiliation:

1. School of Fashion and Textiles The Hong Kong Polytechnic University Hong Kong SAR China

2. Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hong Kong SAR China

3. Research Institute for Intelligent Wearable Systems The Hong Kong Polytechnic University Hong Kong SAR China

4. Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong SAR China

Abstract

AbstractLithium–sulfur battery (LSB) possesses high theoretical energy density, but its poor cycling stability and safety issues significantly restrict progress in practical applications. Herein, a low‐cost and simple Al(OH)3‐based modification of commercial separator, which renders the battery outstanding fire‐retardant and stable cycling, is reported. The modification is carried out by a simple blade coating of an ultrathin composite layer, mainly consisting of Al(OH)3 nanoparticles and conductive carbon, on the cathode side of the separator. The Al(OH)3 shows strong chemical absorption ability toward Lewis‐based polysulfides and outstanding fire retardance through a self‐decomposition mechanism under high heat, while the conductive carbon material acts as a top current collector to prevent dead polysulfide. LSB using the Al(OH)3‐modified separator shows an extremely low average capacity decade per cycle during 1000 cycles at 2 C (0.029%, 1 C = 1600 mA g−1). The pouch cell exhibiting high energy density (426 Wh kg−1) can also steadily cycle for more than 100 cycles with high capacity retention (70.2% at 0.1 C). The effectiveness and accessibility of this Al(OH)3 modification strategy will hasten the practical application progress of LSBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3